Social Network Analysis: #BlackLivesMatter Distribution at Actor Level and System Level
Main Article Content
Abstract
#BlackLivesMatter accompanies several cases of discrimination against the black community. The hashtag was spread by actors who have great influences on Twitter users. The actors create communication network which connected to each other to form opinions about the Black Lives Matter movement. Researchers conducted a study to determine the distribution of #BlackLivesMatter at the actor level for the period 20-27 April 2021 in Twitter. The study used quantitative methods and a positivistic paradigm with a Social Network Analysis (SNA) approach. The results show that the actor with the highest degree of centrality is @jeanmessiha with 238 interactions, the actor with the highest betweenness centrality is @helloagain0611 with a value of 0.000049, the actor with the highest eigenvector centrality is @jeanmessiha with a value of 1 and there are 1,416 actors who have closeness centrality. # BlackLivesMatter has a low diameter value so that it spreads quickly but not too widely, not much reciprocity occurs, not concentrated in one dominant cluster but spread widely in several clusters. The actors play a role in spreading diverse opinions regarding Black Lives Matter, thus creating free discussion in several clusters on Twitter. Opinion widely spread on Twitter creates public opinion regarding the Black Lives Matter movement.
Article Details
Authors who publish with Jurnal Komunikasi Ikatan Sarjana Komunikasi Indonesia agrees to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Anderson, M., Barthel, M., Perrin, A., & Vogels, E. A. (2020). #BlackLivesMatter surges on Twitter after George Floyd’s death. Https://Www.Pewresearch.Org. https://www.pewresearch.org/fact-tank/2020/06/10/blacklivesmatter-surges-on-twitter-after-george-floyds-death/
Anderson, M., Toor, S., Rainie, L., & Smith, A. (2018). An analysis of #BlackLivesMatter and other Twitter hashtags related to political or social issues. Https://Www.Pewresearch.Org. https://www.pewresearch.org/internet/2018/07/11/an-analysis-of-blacklivesmatter-and-other-twitter-hashtags-related-to-political-or-social-issues/
Bakry, G. N. (2020). Struktur Jaringan Pengguna Twitter dengan Tagar #BandungLawanCovid19. Jurnal Komunikasi Global, 9(2).
Driver, S. (2021). Twitter for Business: Everything You Need to Know. Business News Daily. https://www.businessnewsdaily.com/7488-twitter-for-business.html
Eriyanto. (2014). Analisis Jaringan Komunikasi Strategi Baru dalam Penelitian Ilmu Komunikasi dan Ilmu Sosial Lainnya. Prenadamedia Group.
Eriyanto. (2019). Hashtags and Digital Movement of Opinion Mobilization : A Social Network Analysis / SNA Study on # BubarkanKPAI vs # KamiBersamaKPAI Hashtags. Jurnal Komunikasi Indonesia, VIII(3).
Feeley, T. H., Lee, S., & Chen, C. (Yixin). (2018). Communication Networks. In Encyclopedia of Health Communication (pp. 216–218). SAGE Publication.
Kurniawan, D., Iriani, A., & Manongga, D. (2020). Pemanfaatan Social Network Analysis ( Sna ) Untuk Menganalisis Kolaborasi Karyawan Pada Pt. Arum Mandiri Group. Transformatika, 17(2), 149–159.
Lebron, C. J. (2017). The Making of Black Lives Matter: A Brief History of An Idea. In Prose Studies (Vol. 40, Issues 1–2). Oxford University Press. https://doi.org/10.1080/01440357.2019.1656401
Maclean, F., Jones, D., Carin-Levy, G., & Hunter, H. M. (2013). Understanding Twitter. British Journal of Occupational Therapy, 76(6), 295–298. https://doi.org/10.4276/030802213X13706169933021
Rakhman, F. R., Ramadhani, R. W., & Fatoni, A. (2021). Gerakan Opini Digital # Indonesiaterserah Pada Media Sosial Twitter di Masa Pandemi Covid-19. Jurnal Penelitian Komunikasi, 24(1), 29–44. https://doi.org/10.20422/jpk.v24i1.752
Rakhman, F. R., Ramadhani, R. W., & Kuncoroyakti, Y. A. (2021). Analisis Sentimen dan Opini Digital Kampanye 3M di Masa Covid-19 melalui Media Sosial Twitter. Jurnal Komunikologi, 18(01), 8–20.
Samsu. (2017). Metode Penelitian: (Teori dan Aplikasi Penelitian Kualitatif, Kuantitatif, Mixed Methods, serta Research & Development) (Rusmini (ed.)). Pusat Studi Agama dan Kemasyarakatan (Pusaka).
Sataloff, R. T., Johns, M. M., & Kost, K. M. (2011). Social Network Analysis: Theory and Applications. Code Pediapress.
Setatama, M. S., & Tricahyono, D. (2017). Implementasi Social Network Analysis dalam Penyebaran Country Branding “Wonderful Indonesia.” Ind. Journal on Computing, 2(2), 91–104. https://doi.org/10.21108/indojc.2017.22.183
Siyoto, S. (2015). Dasar Metodologi Penelitian (Ayup (ed.); Edisi pert). Literasi Media Publishing.
Tjahyana, L. J. (2019). Gerakan opini digital #truebeauty pada twitter untuk pemeran film adaptasi komik webtoon.
Utami, A. B. (2018). Analisis Jaringan Komunikasi Kelompok. Di MCC Conference Proceeding.
Wicaksono, A., Kusumastuti, R. D., & Prilantini, A. (2019). Jaringan Komunikasi dalam Meningkatkan Produktivitas Pelapak (Studi Kasus pada Komunitas Bukalapak Wilayah Jakarta). Jurnal Penelitian Komunikasi dan Opini Publik, 23(1), 25–39.